Modeled Changes in Potential Grassland Productivity and in Grass-Fed Ruminant Livestock Density in Europe over 1961–2010
نویسندگان
چکیده
About 25% of European livestock intake is based on permanent and sown grasslands. To fulfill rising demand for animal products, an intensification of livestock production may lead to an increased consumption of crop and compound feeds. In order to preserve an economically and environmentally sustainable agriculture, a more forage based livestock alimentation may be an advantage. However, besides management, grassland productivity is highly vulnerable to climate (i.e., temperature, precipitation, CO2 concentration), and spatial information about European grassland productivity in response to climate change is scarce. The process-based vegetation model ORCHIDEE-GM, containing an explicit representation of grassland management (i.e., herbage mowing and grazing), is used here to estimate changes in potential productivity and potential grass-fed ruminant livestock density across European grasslands over the period 1961-2010. Here "potential grass-fed ruminant livestock density" denotes the maximum density of livestock that can be supported by grassland productivity in each 25 km × 25 km grid cell. In reality, livestock density could be higher than potential (e.g., if additional feed is supplied to animals) or lower (e.g., in response to economic factors, pedo-climatic and biotic conditions ignored by the model, or policy decisions that can for instance reduce livestock numbers). When compared to agricultural statistics (Eurostat and FAOstat), ORCHIDEE-GM gave a good reproduction of the regional gradients of annual grassland productivity and ruminant livestock density. The model however tends to systematically overestimate the absolute values of productivity in most regions, suggesting that most grid cells remain below their potential grassland productivity due to possible nutrient and biotic limitations on plant growth. When ORCHIDEE-GM was run for the period 1961-2010 with variable climate and rising CO2, an increase of potential annual production (over 3%) per decade was found: 97% of this increase was attributed to the rise in CO2, -3% to climate trends and 15% to trends in nitrogen fertilization and deposition. When compared with statistical data, ORCHIDEE-GM captures well the observed phase of climate-driven interannual variability in grassland production well, whereas the magnitude of the interannual variability in modeled productivity is larger than the statistical data. Regional grass-fed livestock numbers can be reproduced by ORCHIDEE-GM based on its simple assumptions and parameterization about productivity being the only limiting factor to define the sustainable number of animals per unit area. Causes for regional model-data misfits are discussed, including uncertainties in farming practices (e.g., nitrogen fertilizer application, and mowing and grazing intensity) and in ruminant diet composition, as well as uncertainties in the statistical data and in model parameter values.
منابع مشابه
Future productivity and phenology changes in European grasslands for different warming levels: implications for grassland management and carbon balance
BACKGROUND Europe has warmed more than the global average (land and ocean) since pre-industrial times, and is also projected to continue to warm faster than the global average in the twenty-first century. According to the climate models ensemble projections for various climate scenarios, annual mean temperature of Europe for 2071-2100 is predicted to be 1-5.5 °C higher than that for 1971-2000. ...
متن کاملPotential of legume-based grassland–livestock systems in Europe: a review
European grassland-based livestock production systems face the challenge of producing more meat and milk to meet increasing world demands and to achieve this using fewer resources. Legumes offer great potential for achieving these objectives. They have numerous features that can act together at different stages in the soil-plant-animal-atmosphere system, and these are most effective in mixed sw...
متن کاملMitigating the greenhouse gas balance of ruminant production systems through carbon sequestration in grasslands.
Soil carbon sequestration (enhanced sinks) is the mechanism responsible for most of the greenhouse gas (GHG) mitigation potential in the agriculture sector. Carbon sequestration in grasslands can be determined directly by measuring changes in soil organic carbon (SOC) stocks and indirectly by measuring the net balance of C fluxes. A literature search shows that grassland C sequestration reaches...
متن کاملCombining livestock production information in a process-based vegetation model to reconstruct the history of grassland management
Grassland management type (grazed or mown) and intensity (intensive or extensive) play a crucial role in the greenhouse gas balance and surface energy budget of this biome, both at field scale and at large spatial scale. However, global gridded historical information on grassland management intensity is not available. Combining modelled grass-biomass productivity with statistics of the grassbio...
متن کاملAnalysis of Feed Carrying Capacity for Ruminant Livestock in Madura Island, Indonesia
A region is considered self-sustainable when the feed provision is adequate for all livestock demands. Livestock is fed in order to supply nutrient needs for maintenance, growth, and reproduction purposes. This study aimed to determine whether Madura Island inIndonesia is able to independently provide sufficient forage for its ruminant livestock. A Carrying Capacity Index (CCI) in four regions ...
متن کامل